Weak time discretization for slow-fast stochastic reaction-diffusion equations
نویسندگان
چکیده
منابع مشابه
Macroscopic reduction for stochastic reaction-diffusion equations
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equations with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estima...
متن کاملSingular-Degenerate Multivalued Stochastic Fast Diffusion Equations
We consider singular-degenerate, multivalued stochastic fast diffusion equations with multiplicative Lipschitz continuous noise. In particular, this includes the stochastic sign fast diffusion equation arising from the BakTang-Wiesenfeld model for self-organized criticality. A well-posedness framework based on stochastic variational inequalities (SVI) is developed, characterizing solutions to t...
متن کاملAverage and deviation for slow-fast stochastic partial differential equations
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz assumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the deviation between the original equ...
متن کاملAveraging principle for a class of stochastic reaction–diffusion equations
We consider the averaging principle for stochastic reaction–diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical ...
متن کاملA Fast Solver for Systems of Reaction-Diffusion Equations
Here, u is a vector-valued function, u ≡ u(x, t) ∈ R, m is large, and the corresponding system of ODEs, ∂tu = F (x, t, u), is stiff. Typical examples arise in air pollution studies, where a is the given wind field and the nonlinear function F models the atmospheric chemistry. The time integration of Eq. (1) is best handled by the method of characteristics [1]. The problem is thus reduced to des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Continuous Dynamical Systems - B
سال: 2021
ISSN: 1553-524X
DOI: 10.3934/dcdsb.2021019